Physical Principles of Efficient Excitation Transfer in Light Harvesting
نویسندگان
چکیده
After light absorption the primary process in light harvesting is the transfer of excitation to a reaction center which facilitates a separation of charge across a cell membrane. The physical principles underlying excitation transfer are explained. Theoretical methods for the description of the excitation migration process, including an expansion for excitation lifetime in terms of repeated trapping and subsequent detrapping events and the construction of representative pathways for excitation transfer based on mean first passage times, are presented. Measures for robustness and optimality of excitation transfer in terms of quantum yield are introduced. Photosystem I (PSI) is used as an example to illustrate the methods discussed. Some conclusions for the design of artificial light harvesting systems are also discussed.
منابع مشابه
Design principles of natural light harvesting as revealed by single molecule spectroscopy
Biology offers a boundless source of adaptation, innovation, and inspiration. A wide range of photosynthetic organisms exist that are capable of harvesting solar light in an exceptionally efficient way, using abundant and low-cost materials. These natural light-harvesting complexes consist of proteins that strongly bind a high density of chromophores to capture solar photons and rapidly transfe...
متن کاملEnergy transfer in aggregates of bacteriochlorophyll c self-assembled with azulene derivatives.
Bacteriochlorophyll (BChl) c is the main light-harvesting pigment of certain photosynthetic bacteria. It is found in the form of self-assembled aggregates in the so-called chlorosomes. Here we report the results of co-aggregation experiments of BChl c with azulene and its tailored derivatives. We have performed spectroscopic and quantum chemical characterization of the azulenes, followed by sel...
متن کاملExploiting Collective Effects to Direct Light Absorption in Natural and Artificial Light-harvesters
Title of dissertation: EXPLOITING COLLECTIVE EFFECTS TO DIRECT LIGHT ABSORPTION IN NATURAL AND ARTIFICIAL LIGHT-HARVESTERS Chris Schroeder, Doctor of Philosophy, 2016 Dissertation directed by: Professor Luis A. Orozco Joint Quantum Institute, University of Maryland Department of Physics and National Institute of Standards and Technology Photosynthesis – the conversion of sunlight to chemical en...
متن کاملStrategies to enhance the excitation energy-transfer efficiency in a light-harvesting system using the intra-molecular charge transfer character of carotenoids.
Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (∼95%) energy-transfer from fucoxanthin to chlorop...
متن کاملAtomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria.
Phototrophic organisms such as plants, photosynthetic bacteria, and algae use microscopic complexes of pigment molecules to absorb sunlight. Within the light-harvesting complexes, which frequently have several functional and structural subunits, the energy is transferred in the form of molecular excitations with very high efficiency. Green sulfur bacteria are considered to be among the most eff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004